Unit 4 Describing Particles
What is the mole?
We are now going to consider the actual
number of particles of a substance. Because this
number will be very large, we will need a way to
deal with it- an appropriate counter.
A counter is simply a grouping.
dozen - 12
pair - 2
mole - 6.02×10^{23}
Why do we use counters?

The Mole

1 mole is 602,000,000,000,000,000,000,000

1 mole of atoms = 6.02×10^{23} atoms

1 mole of molecules = 6.02×10^{23} molecules

This equivalence statement can be used to do conversions.

Do you remember how to enter 6.02×10^{23} into your calculator?

1 mole of atoms = 6.02×10^{23} atoms 1 mole molecules = 6.02×10^{23} molecules How many moles of water do I have if I have 1.8×10^{24} molecules of water? 1.8 × 10²⁴ molecules [mole (6.02+10²³ molecule) 3.0 moles] How many atoms of aluminum do I have if I have 2.45 moles of aluminum? 2.45 moles 6.02×10²³ atoms = 1.4749×10²⁴ 1.47×10²⁴ atoms of Al

If I have a mole of aluminum atoms how many atoms do I have?

If I have a mole of BBs, how many BBs do I have?

If I had half a mole of marbles, how many would I have?