Unit 4 Describing substances	
	When do we use molar mass and Avogadro's number?
	As you learned with Dalton's atomic theory, when
	substances undergo a chemical change, the atoms
	rearrange in whole number ratios.
	The problem for us is that we can't physically
	count these atoms and molecules.
	We "count by weighing" instead, and use molar
	mass to do this.
	How much carbon should I weigh out if
	I want one mole of carbon?

How much carbon should I weigh out if I want 2.5 moles? Inde C = 12.01g 2.5 moles C/ 12.01g C = 30.g C use molar mass to convert.

What is the mass of 2.56 moles of H_2O ? 2.56 mol H20 18.02g = 46.1g H20 Imrl H20 = 46.1g H20 $1 \text{ mole } H_2O = 18.02 \text{ g}$ How many moles is 17.4 g of H_2O ? 17.4gH20 Imol H20 = 0.966 mol H20 18.02g

If I wanted
$$6.02 \times 10^{23}$$
 atoms of sulfur, how
much should I weigh out?
one mole of sulfur weighs 32.07 g /mde = 32.07 g^{5}
 6.02×10^{23} atoms is one mole, $|mrle=4.02 \times 10^{23}$ atoms
 6.02×10^{23} atoms $|mrle| = 1.00 \text{ mol} \text{ s}$
 $\frac{6.02 \times 10^{23} \text{ atom} \text{ s}}{(6.02 \times 10^{23} \text{ atoms})} = 1.00 \text{ mol} \text{ s}$
 $\frac{1.00 \text{ mol} \text{ s}}{(1.02 \times 10^{23} \text{ atoms})} = 32.07 \text{ g} \text{ s}$
 $2 - \text{ step problem. Hatoms = mrle = mass}$

How much would 5.71×10^{24} molecules of water weigh? 5.71×10²⁴ mole 1 mole = 9,49 mole 120 (6.02+10²³ molecular <u>9.49 mole HS | 18.02g HzO</u> = 171g HzO Imole 5.7/×10²⁴ Imole 18.02gHo 6.02×10²³ Imole = 171gH₂0 1 mile = 18.02g 120 mole = 6.02 ×1023 molicula